Iterative Hard Thresholding for Weighted Sparse Approximation

نویسنده

  • Jason Jo
چکیده

Recent work by Rauhut and Ward developed a notion of weighted sparsity and a corresponding notion of Restricted Isometry Property for the space of weighted sparse signals. Using these notions, we pose a best weighted sparse approximation problem, i.e. we seek structured sparse solutions to underdetermined systems of linear equations. Many computationally efficient greedy algorithms have been developed to solve the problem of best s-sparse approximation. The design of all of these algorithms employ a similar template of exploiting the RIP and computing projections onto the space of sparse vectors. We present an extension of the Iterative Hard Thresholding (IHT) algorithm to solve the weighted sparse approximation problem. This IHT extension employs a weighted analogue of the template employed by all greedy sparse approximation algorithms. Theoretical guarantees are presented and much of the original analysis remains unchanged and extends quite naturally. However, not all the theoretical analysis extends. To this end, we identify and discuss the barrier to extension. Much like IHT, our IHT extension requires computing a projection onto a non-convex space. However unlike IHT and other greedy methods which deal with the classical notion of sparsity, no simple method is known for computing projections onto these weighted sparse spaces. Therefore we employ a surrogate for the projection and present its empirical performance on power law distributed signals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Randomized Iterative Hard Thresholding: A Fast Approximate MMSE Estimator for Sparse Approximations

Typical greedy algorithms for sparse reconstruction problems, such as orthogonal matching pursuit and iterative thresholding, seek strictly sparse solutions. Recent work in the literature suggests that given a priori knowledge of the distribution of the sparse signal coefficients, better results can be obtained by a weighted averaging of several sparse solutions. Such a combination of solutions...

متن کامل

An iterative hard thresholding approach to ℓ0 sparse Hellinger NMF

Performance of Non-negative Matrix Factorisation (NMF) can be diminished when the underlying factors consist of elements that overlap in the matrix to be factorised. The use of `0 sparsity may improve NMF, however such approaches are generally limited to Euclidean distance. We have previously proposed a stepwise `0 method for Hellinger distance, leading to improved sparse NMF. We extend sparse ...

متن کامل

CGIHT: Conjugate Gradient Iterative Hard Thresholding for Compressed Sensing and Matrix Completion

We introduce the Conjugate Gradient Iterative Hard Thresholding (CGIHT) family of algorithms for the efficient solution of constrained underdetermined linear systems of equations arising in compressed sensing, row sparse approximation, and matrix completion. CGIHT is designed to balance the low per iteration complexity of simple hard thresholding algorithms with the fast asymptotic convergence ...

متن کامل

Successive Concave Sparsity Approximation: Near-Oracle Performance in a Wide Range of Sparsity Levels

In this paper, based on a successively accuracyincreasing approximation of the `0 norm, we propose a new algorithm for recovery of sparse vectors from underdetermined measurements. The approximations are realized with a certain class of concave functions that aggressively induce sparsity and their closeness to the `0 norm can be controlled. We prove that the series of the approximations asympto...

متن کامل

A Convergent Iterative Hard Thresholding for Nonnegative Sparsity Optimization

The iterative hard thresholding (IHT) algorithm is a popular greedy-type method in (linear and nonlinear) compressed sensing and sparse optimization problems. In this paper, we give an improved iterative hard thresholding algorithm for solving the nonnegative sparsity optimization (NSO) by employing the Armijo-type stepsize rule, which automatically adjusts the stepsize and support set and lead...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1312.3582  شماره 

صفحات  -

تاریخ انتشار 2013